澳大利亚昆士兰大学:王连洲

发布时间:2016-12-23浏览次数:3917

学术报告

     应PP电子游戏网站钢冶系姜周华教授邀请,澳大利亚昆士兰大学王连洲教授将到我校交流并讲学。

讲座时间:12月28日(周三)14:30

讲座内容:Designing Semiconductor Nanomaterials for Solar Energy Conversion

讲座地点:钢铁楼510会议室

欢迎感兴趣的师生参加!

王连洲简历:

王连洲, 现为澳大利亚昆士兰大学化工学院教授,功能纳米材料研究中心主任。主要从事半导体纳米材料的合成及其在清洁能源领域的应用。1999年博士毕业于中国科学院上海硅酸盐研究所,并获当年度中国科学院院长奖学金。1999年至2004年在日本国立产业技术综合研究所和日本国立物质材料研究机构做博士后研究。2004年起在澳大利亚昆士兰大学的澳洲基金委(ARC)功能纳米材料中心任项目研究员/ 澳洲基金委女王伊丽莎白学者,化工学院高级讲师 (2007,副教授(2010),教授(2012-)。先后在诸多国际期刊包括Chem. Rev.Chem. Soc. Rev., Adv. Mater., Angew. Chem., J. Am. Chem. Soc. 等发表论文250多篇,作国际会议大会或邀请学术报告60余次,申请专利12项。近年作为主要负责人(Chief Investigator)先后承担或参与了澳大利亚基金委、澳洲科学院、昆士兰州政府以工业界等40余项竞争性研究项目,总金额超过2000 万澳元。担任Journal of Nanoparticle Research 和科学通报英文版(Science Bulletin) 执行副主编。2006年获澳洲基金委女王伊丽莎白学者称号,2008年获得昆士兰大学研究优秀奖,2011年获得澳大利亚寻找未来之星奖(Scopus Young Researcher of the Year Award, 2012年获澳洲基金委未来学者称号(Future Fellowship, 2015入选澳洲基金委工程技术领域评选委员会(College of Experts) 和皇家化学会会士。


Designing Semiconductor Nanomaterials for Solar Energy onversion

Semiconductor materials represent a family of functional materials which could be rationally modified for a variety of important applications including photocatalytic solar hydrogen production and low cost solar cells. The capability to design innovative semiconductor materials with desirable functionalities is of interest and challenging tasks. In this talk, we will give a brief overview of our recent progresses in designing semiconductor metal oxides materials for photoelectrochemical energy conversion including photocatalytic solar fuel generation and low cost solar cells. In more details, we have been focusing the following a few aspects; 1) band-gap engineering of layered semiconductor compounds including layered titanate, tantalate and niobate-based metal oxide compounds for visible light phtocatalysis, and 2) two-dimensional nanosheets/nanoplates of TiO2, Fe2O3 and WO3 as building blocks for new photoelectrode designand 3) the design of semiconductor nanoparticles for low cost solar cells including perovskite and quantum dot solar cell applications.1-5 The resultant material systems exhibited efficient visible light photocatalytic performance and improved power conversion efficiency in solar energy, which underpin important solar-energy conversion applications including solar electricity and solar fuel production.